Intrasplenic Transplantation of Bioencapsulated Mesenchymal Stem Cells Improves the Recovery Rates of 90% Partial Hepatectomized Rats

نویسندگان

  • Zun Chang Liu
  • Thomas Ming Swi Chang
چکیده

Mesenchymal stem cells (MSCs) derived from bone marrow can secrete cytokines and growth factors and can transdifferentiate into liver cells. We transplanted polymeric membrane bioencapsulated MSCs into the spleens of 90% partial hepatectomized rats. This resulted in 91.6% recovery rates. This is compared to a recovery rate of 21.4% in the 90% hepatectomized rats and 25% in the 90% hepatectomized rats receiving intrasplenic transplantation of free MSCs. After 14 days, the remnant livers in the bioencapsulated MSCs group are not significantly different in weight when compared to the sham control group. From day 1 to day 3 after surgery, in the bioencapsulated MSCs group, the plasma HGF and IL-6 were significantly higher than those in the free MSCs group and control group (P < 0.01); plasma TNF-α was significantly lower (P < 0.001). We concluded that the intrasplenic transplantation of bioencapsulated MSCs significantly increases the recovery rates of 90% hepatectomized rats. It is likely that the initial effect is from proliver regeneration factors followed later by the transdifferentiated hepatocyte-like cells. However, histopathological analysis and hepatocyte proliferation study will be needed to better understand the regenerative mechanisms of this result. This study has implications in improving the survival and recovery of patients with very severe liver failure due to hepatitis, trauma, or extensive surgical resection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transplantation of bioencapsulated bone marrow stem cells improves hepatic regeneration and survival of 90% hepatectomized rats: a preliminary report.

We transplanted bioencapsulated bone marrow stem cells intraperitoneally into 90% hepatectomized rats and found that this increases both the rates of hepatic regeneration and survival of the animals. Bone marrow cells isolated from Wistar rats were bioencapsulated using alginate-polylysine-alginate method. These bioencapsulated bone marrow cells were transplanted intraperitoneally into 90% hepa...

متن کامل

Transdifferentiation of bioencapsulated bone marrow cells into hepatocyte-like cells in the 90% hepatectomized rat model.

Under specific conditions, bone marrow cells can transdifferentiate into a variety of cell types including hepatocytes. In this study, bioencapsulated bone marrow cells were transplanted intraperitoneally into 90% hepatectomized rats. We then followed the transdifferentiation of the bone marrow cells and the effect of this on liver regeneration in this liver failure model. Bone marrow cells iso...

متن کامل

Mesenchymal stem cells that located in the electromagnetic fields improves rat model of Parkinson's disease

Objective(s): The main characteristic of mesenchymal stem cells (MSCs) is their ability to produce other cell types. Electromagnetic field (EMF) stimulates differentiation of MSCs into other cells. In this study, we investigated whether EMF can effect on the differentiation of MSCs into dopaminergic (DA) neurons. Materials and Methods: An EMF with a frequency of 50 Hz and two intensities of 40 ...

متن کامل

Nuclear factor erythroid-2 related factor 2 overexpressed mesenchymal stem cells transplantation, improves renal function, decreases injuries markers and increases repair markers in glycerol-induced Acute kidney injury rats

Objective(s):Recently cell therapy is a promising therapeutic modality for many types of disease including acute kidney injury (AKI). Due to the unique biological properties, mesenchymal stem cells (MSCs) are attractive cells in this regard. This study aims to transplant MSCs equipped with nuclear factor E2-related factor 2 (Nrf2) in rat experimental models of acute kidney and evaluate regenera...

متن کامل

Partial Improvement of Spatial Memory Damages by Bone Marrow Mesenchymal Stem Cells Transplantation Following Trimethyltin Chloride Administration in the Rat CA1

Introduction: Trimethyltin Chloride (TMT) is a neurotoxin that can kill neurons in the nervous system and activate astrocytes. This neurotoxin mainly damages the hippocampal neurons. After TMT injection, behavioral changes such as aggression and hyperactivity have been reported in animals along with impaired spatial and learning memory. Hence, TMT is a suitable tool for an experimental model of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012